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Effect of slow compression on the linear stability of an accelerated shear layer

John D. Ramshaw
Lawrence Livermore National Laboratory, University of California, P.O. Box 808, L-097, Livermore, California 94551

~Received 28 May 1999!

An analysis is given of the effect of a slow uniform anisotropic compression or expansion on the linear
stability of a normally accelerated planar interface between two fluids with different densities and tangential
velocities, i.e., a combined Kelvin-Helmholtz and Rayleigh-Taylor instability, but generalized to an arbitrary
time-dependent acceleration history. The compression is presumed to be sufficiently slow that the density
remains uniform within each fluid and hence depends only on time. The perturbation is taken to be sinusoidal
with amplitude h(t). The time evolution ofh is determined by requiring pressure continuity across the
interface in the usual way. The resulting linearized stability equation is a second-order linear ordinary differ-
ential equation forh(t). Compared to the corresponding well-known result for incompressible fluids, it is

found that normal compression has the effect of reducing the perturbation growth rateḣ by an obvious
geometrical correction, while transverse compression does not directly affect the net growth rate but rather has
the dynamical effect of increasing its time derivative. When attention is focused on the masses transported
across the initial interface rather thanh, the purely geometrical effects of compression no longer appear
explicitly, while the dynamical effects remain. It is thereby shown that both normal and transverse compression
dynamically enhance the mixing of material masses, in spite of the corresponding purely geometrical reduction

in ḣ.

PACS number~s!: 47.20.Bp, 47.20.Ft, 47.20.Ma
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I. INTRODUCTION

Linear stability analysis@1–3# remains an indispensabl
tool in the continuing effort to understand mixing at unsta
fluid interfaces. The linear analysis provides an accurate
scription of the early stages of mixing, where the pertur
tion amplitude is small, and yields valuable analytical e
pressions for linear growth rates and their function
dependence on the various relevant parameters such as w
length, gravity, density ratio, etc. The linear theory a
serves as a cornerstone for the development of approxim
theories and models to describe mixing at late times, wh
the dynamics becomes strongly nonlinear@4,5#. This was
indeed the motivation for the present work, and a cor
sponding nonlinear model based on the present results
be described elsewhere. However, the linear case is als
intrinsic interest in its own right, as it provides a theoretic
framework for interpreting the early-time dynamics of u
stable fluid interfaces.

There are three classical interfacial instabilities, nam
the Rayleigh-Taylor~RT! @2,3,6#, Richtmyer-Meshkov~RM!
@7,8#, and Kelvin-Helmholtz~KH! @1–3# instabilities. The
linear theory of these instabilities in incompressible fluids
well known and well understood, both when they occur se
rately and when they occur together in various hybrid co
binations. Indeed, a linear stability analysis is readily p
formed for a planar shear layer subjected to an arbitr
time-dependent acceleration in the normal direction@1–3#, a
situation which encompasses the three basic instabil
above as special cases. The analysis shows that the
evolution of the amplitudeh of a small sinusoidal perturba
tion with wavelengthl52p/k is determined by the equatio

2r̄ḧ5@Drak1r12~kxDu!2#h, ~1!
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where q̇5dq/dt, r i is the density of fluidi, 2r̄5r11r2 ,
Dr5r22r1 , r125r1r2 /(r11r2), ui

0 is the unperturbed
tangential velocity of fluidi parallel to the interface,Du
5u2

02u1
0 is the tangential velocity discontinuity,kx is the

component of the perturbation wave vector along the dir
tion associated withDu, and the accelerationa(t) is consid-
ered positive when directed from fluid 1 into fluid 2. Th
same analysis further shows that the perturbation propag
along the interface with a phase velocity of

ū05
r1u1

01r2u2
0

r11r2
. ~2!

Equation~1! is valid only for h!l, and is restricted to
incompressible fluids for whichr i is constant in space an
time. In the absence of a better alternative, it has someti
been employed as an approximation to compressible fluid
well, particularly at low to moderate Mach numbers. Ho
ever, even when the Mach number is so low that the in
mogeneities associated with acoustic waves are neglig
compression or expansion of the mixing layer as a wh
produces global effects that Eq.~1! does not capture, includ
ing the purely geometrical changes inh and/ork associated
with compression or expansion in the normal and/or tang
tial directions, respectively. The correction for these ge
metrical effects is not however obvious, as they interact w
and alter the dynamics. Our purpose here is to derive a g
eralization of Eq.~1! that consistently includes the effects
a slow uniform anisotropic compression or expansion of
mixing layer as a whole. Attention is restricted to compre
sion and expansion rates which are sufficiently slow that
fluid densitiesr i remain uniform in space, and hence depe
only upon time. The analysis therefore makes no attemp
1486 ©2000 The American Physical Society
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PRE 61 1487EFFECT OF SLOW COMPRESSION ON THE LINEAR . . .
represent the more complicated compressibility effects a
ciated with nonzero Mach number and acoustic waves.

The derivation is based on potential flow theory. In Sec
we obtain the linearized potential flow solution for a sin
soidal perturbation of an accelerated interface between
fluids with different densities and tangential velocities su
jected to an externally imposed uniform but anisotropic co
pression or expansion. The corresponding linearized eq
tion of motion for the perturbation amplitudeh is then
derived in Sec. III by the conventional technique of requiri
the pressure to be continuous across the interface. This
yields the desired compressive generalization of Eq.~1!.

In the present context, however, the evolution equat
for h is not the whole story. The densities and interfacial a
also change with time due to the compression, so that
perturbation amplitudeh alone no longer provides a suitab
measure of the degree of mixing. It is therefore of interes
convert the evolution equation forh into a corresponding
evolution equation for the actual material massesMi trans-
ported across the unperturbed interface, which are a m
accurate measure of the degree to which the two fluids h
been mixed together by the instability. When this is done,
purely geometrical effects of the compression no longer
pear explicitly, and only the dynamical effects remain. T
resulting evolution equation forMi shows that compressio
dynamically enhances the mixing of material masses.

It is also of interest to compare the evolution equation
Mi in the special caseDu50 with that for the volume trans
ported across a spherical interface between two conce
incompressible fluid shells@5#. These two equations ar
found to be identical in form when the compression rates
properly specialized to the spherical case. Finally, in Sec
we derive approximate analytical expressions for the gro
rates of bothh andMi in the special case of constant norm
acceleration.

II. LINEARIZED POTENTIAL FLOW SOLUTION

We consider an initially planar interface which separa
two immiscible fluids with negligible surface tension in ze
gravity. The unperturbed velocity of fluidi is denoted byui

0,
which is presumed to be uniform and purely tangential to
interface. Thusui

0
•n50, wheren is the unit normal to the

interface which points from fluid 1 into fluid 2. The system
also subjected to a normal accelerationa(t)n relative to an
inertial laboratory frame. It is convenient to describe the s
tem in a Cartesian coordinate frame with the same acce
tion. In this frame the system experiences an artificial ex
nal body force per unit mass of2a(t)n, and the unperturbed
interface is stationary for allt. The interface is then define
by the time-independent equationn•r50, wherer is the po-
sition vector relative to an origin located somewhere on
interface. It is further convenient to let the coordinate fra
move parallel to the plane of the interface with the veloc
of the linear KH surface waves, so that these waves a
become stationary. When this is done we haver1u1

01r2u2
0

50, which then implies

r2u2
052r1u1

05r12Du, ~3!

whereDu5u2
02u1

0 is the tangential velocity discontinuity.
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Without yet perturbing the interface, we now impose
uniform anisotropic compression upon the system, so that
unperturbed velocity of fluidi becomes

ui
D5ui

01D•r , ~4!

where the uniform symmetric tensorD is the gradient of the
velocity field associated with the compression and exp
sion. Thus negative eigenvalues ofD imply compression,
while positive eigenvalues imply expansion in their resp
tive principal directions. In order to ensure that the compr
sion and expansion do not change the normal directionn, we
must impose the conditionn•D•t50, wheret is any tangent
vector normal ton; i.e., n•t50. It follows thatD is of the
form

D5Dnnn1Dt , ~5!

where Dt•n50. Since the compression and expansion
uniform, the fluid densitiesr i remain uniform within each
fluid but now become dependent on time according to

ṙ i52Dr i , ~6!

whereD5“•ui
D5D:U, andU is the unit dyadic.

We must of course require pressure continuity at the
terface in the unperturbed solution, and this imposes so
restrictions onui

0 andDt . These restrictions may be inferre
from the momentum equation of unperturbed fluidi,

r i S ]ui
D

]t
1ui

D
•“ui

DD 52“pi
D2r ian, ~7!

wherepi
D is the unperturbed pressure in fluidi. Taking the

dot product of the tangential projection tensorU2nn into
Eq. ~7!, combining the result with Eqs.~4! and ~5!, and
evaluating the resulting equation on the interface wherr
becomes a purely tangential vectort, we obtain

“ tpi
D52r i@ u̇i

01Dt•ui
01t•~Ḋt1Dt•Dt!#, ~8!

where“ t5“2nn•“ is the tangential gradient operator, an
use has been made of the fact thatui

0
•n50. Pressure equality

at the interface requires that“ tp1
D5“ tp2

D , and since the
densities are generally different andt is arbitrary, this in turn
implies

u̇i
01Dt•ui

050, ~9!

Ḋt1Dt•Dt50. ~10!

If Eqs. ~9! and ~10! are not satisfied, this merely implie
that some other motion is also occurring in addition to t
interfacial instabilities of present interest. In such cases,
unperturbed interface will no longer remain stationary b
will undergo some additional distortion unrelated to the
stability, and the present analysis will no longer rigorous
apply. Even when Eqs.~9! and ~10! are violated, however
interfacial instabilities will still occur, and the present anal
sis may still provide a useful description of these instabilit
in situations where their growth rates are much larger th
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1488 PRE 61JOHN D. RAMSHAW
the characteristic frequencies associated with the underl
motions upon which they are superimposed.

We now perturb the interface by subjecting each poinr
thereof to a small vectorial displacementh(t)Cn, whereC
5cos@k(t)•r #, k•n50, and uhku!1. The interface is now
defined by the equationn•r5hC. The time dependence ofk
is necessary to allow for the change in wavelength due to
tangential compression; i.e., nonzeroDt . The time evolution
of k may be determined by requiring the phasek(t)•R(t) to
be independent of time for a pointR(t) moving with the
transverse compression velocityDt•R; i.e., Ṙ5Dt•R. We
thereby find

k̇52Dt•k52D•k. ~11!

We wish to evaluate the resulting potential flow fieldui
5“f i in fluid i to first order inh. The perturbation to the
velocity field isui8[ui2ui

D , and the perturbation to the po
tential is f i8[f i2f i

D , where “f i
D5ui

D and “f i85ui8 .
Apart from irrelevant constants, the unperturbed velocity
tentials are therefore given by

f i
D5ui

0
•r1

1

2
r•D•r . ~12!

The externally imposed uniform compression is assume
be sufficiently slow that acoustic effects can be neglected
that“•ui remains uniform with the valueD. It then follows
that“•ui85“

2f i850, so that the perturbation to the veloci
potential remains harmonic even though“2f i5DÞ0. The
boundary conditions onf i are ~a! f i→f i

D ~so that f i8
→0) far from the interface and~b! the normal derivative of
f i on the interface must be the same as the normal velo
of the interface, with due allowance for the fact that t
perturbation now causes the normal direction to dif
slightly from n. Condition~b! takes the form

~n1hSk!•“f i5ḣC2hSk̇•r , ~13!

whereS5sin@k(t)•r #, and the derivatives are evaluated
n•r5hC. In the linear approximation, Eq.~13! reduces to

S ]f i8

]n D
n•r50

5~ ḣ2Dnh!C2hSui
0
•k, ~14!

where]f i8/]n[“f i8•n, and use has been made of Eq.~11!.
The solutions to Laplace’s equation that satisfy Eq.~14! and
vanish at infinity are readily found to be

f i857
1

k
@~ ḣ2Dnh!C2hSui

0
•k#e7k•r, ~15!

wherek5uku, the upper sign applies forn•r.hC ( i 52),
and the lower sign forn•r,hC ( i 51). The velocity of fluid
i is then given byui5ui

01D•r1“f i8 .

III. LINEARIZED EQUATION OF MOTION

Equation~12! and ~15! determine the potentialsf i5f i
D

1f i8 and hence the velocitiesui5ui
D1“f i8 resulting from a

prescribed perturbation amplitudeh(t). For an arbitrary
g

e

-

to
so

ty

r

t

h(t), however, the corresponding pressures in the two flu
will in general be discontinuous across the interface. T
natural motion of the system is that which preserves pres
continuity at the interfacen•r5h(t)C, and this condition
may be imposed to determine the linearized equation of m
tion for h(t). For this purpose we require a suitable expre
sion for the pressurepi in fluid i. If the flow were incom-
pressible,pi could be obtained from the time-depende
Bernoulli equation@9#

pi52r i S ]f i

]t
1

1

2
u“f i u21a~ t !n•r D1Fi~ t !, ~16!

whereFi(t) is a function of time alone. In the present co
text the flow is not incompressible, andr i depends on time
according to Eq.~6!. Fortunately, however, it is easy t
verify that Eq.~16! remains valid even in this case, provide
thatr i remains uniform as it does here.~This follows directly
from the momentum equation in the usual way.! We may
therefore employ Eq.~16! in the present context. To do so
we simply substitutef i5f i

D1f i8 into Eq.~16!, evaluate the
resulting pi at n•r5h(t)C, and linearize inh. After some
algebra, we thereby obtain

pi5pi
01pi

CC1pi
SS, ~17!

where

pi
052

1

2
r i uui

0u21Fi~ t !, ~18!

kpi
C56r iF d

dt
~ ḣ2Dnh!1Dk~ ḣ2Dnh!2~ui

0
•k!2hG

2r iakh, ~19!

kpi
S57r iui

0
•@~2ḣ1Dkh2Dnh!k22hD•k# ~20!

in which

k2Dk5k•D•k5k•Dt•k ~21!

and use has been made of Eqs.~9!–~11!.
The linearized equation of motion forh is obtained by

requiring p15p2 for all k•r . The three terms inpi are lin-
early independent, so their coefficients must be separa
equal, i.e.,p1

05p2
0, p1

S5p2
S , andp1

C5p2
C . The first of these

conditions provides no information, as it merely relat
F1(t) and F2(t). ~It does, however, have thermodynam
implications as discussed in Sec. V below.! The second con-
dition reduces to an identity by virtue of Eq.~3!, thereby
confirming that Eq.~3! does indeed imply stationary KH
surface waves even when compression is present. Thus
only nontrivial condition isp1

C5p2
C , which yields

d

dt
~ ḣ2Dnh!1Dk~ ḣ2Dnh!5@Aka~ t !1B~k•Du!2#h,

~22!

where A5(r22r1)/(r21r1)5Dr/(2r̄) is the Atwood
number,B5r1r2 /(r11r2)25r12/(2r̄), and use has bee
made of Eq.~3!.
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Equation~22! is the desired generalization of Eq.~1! to
allow for nonzero values ofD. It is the linearized equation o
motion for the perturbation amplitude in an accelerated sh
layer with slow compression, and it properly reduces to
incompressible Eq.~1! whenD50 as it should. Comparison
with Eq. ~1! shows that normal compression~negativeDn)
has the obvious geometrical effect of reducing the pertur
tion growth rate by an amountuDnuh. However, we show
below that this reduction has no effect on the fluid mas
transported across the interface or mixed together by the
stability. It is entirely analogous to the purely geometric
effects on perturbation amplitude that occur in spherical
ometry @5#. Comparison with Eq.~1! further shows that
transverse compression~negativeDk) does not directly affect
the net perturbation growth rateḣ2Dnh itself, but rather has
the dynamical effect of increasing its time derivative by
amountuDku(ḣ2Dnh).

It is of interest to derive a corresponding evolution equ
tion for the massMi(t) of fluid i which has moved acros
some Lagrangian areaA of the original interface by timet.
This mass is readily found to beMi(t)5p21r iAh, where
Ȧ5(Dt :U)A due to the transverse compression. Eliminat
h and its derivatives from Eq.~22! in favor of Mi(t) and its
derivatives, we readily obtain

M̈ i1~Dn1Dk!Ṁ i5@Aka~ t !1B~k•Du!2#Mi , ~23!

where use has been made of Eq.~6!. Comparison with Eq.
~22! shows that the transformation toMi as a variable has
eliminated the purely geometrical correction discuss
above, asṀ i itself is not modified by compressive effect
However, the dynamical effects of compression remain
are represented by the term (Dn1Dk)Ṁ i , which subtracts
from M̈ i . For a growing perturbation withMi ,Ṁ i.0, com-
pression (Dn ,Dk,0) therefore has the effect of increasin
M̈ i . Thus we see thatcompression dynamically enhanc
mixing, whereas a superficial interpretation of the simul
neous but purely geometrical reduction inḣ might errone-
ously lead one to the opposite conclusion. The physical
terpretation of this dynamical effect is not obvious in t
present treatment, but it will be shown elsewhere that
effect represents the amplification of kinetic energy by co
pression, and hence is closely analogous top dV work.

It is also of interest to compare Eq.~23! with the corre-
sponding growth law for an accelerated spherical interfac
radiusR between concentric incompressible fluid shells@5#,
where the variable corresponding toMi is s5R2h, which is
proportional to the volume transported across the unp
turbed spherical interface. In the limit of large perturbati
mode numberl , the evolution equation fors takes the form
@5#

s̈2
Ṙ

R
ṡ5Aka~ t !s, ~24!

wherek5l /R is the effective wave number of the perturb
tion @5#. Equation~24! is formally identical with Eq.~23! for
Du50 if Dn1Dk is identified with2Ṙ/R. This identifica-
tion is indeed appropriate, and this is easily established
ar
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follows. The unperturbed incompressible radial velocity fie
in spherical geometry is given byur5R2Ṙ/r 2, so thatDn

5]ur /]r ur 5R522Ṙ/R. Moreover, in spherical geometr
the areaA is simply proportional toR2, so thatDt :U5Ȧ/A
52Ṙ/R. But in this context any two orthogonal tangenti
directions are equivalent by symmetry, so thatDk

5(1/2)Dt :U5Ṙ/R. Thus Dn1Dk522Ṙ/R1Ṙ/R52R/R.
When properly interpreted, Eqs.~22! and~23! therefore also
apply in spherical geometry as a special case. This is q
remarkable, and makes it tempting to speculate that th
equations may provide a useful approximate description
compression and convergence effects on deforming cur
interfaces in general, provided of course that the radius
curvature remains much larger than the amplitude and wa
length of the perturbations.

IV. APPROXIMATE GROWTH RATES FOR CONSTANT
ACCELERATION

Whena andDu are constant in time, Eq.~1! can of course
be solved analytically, and one obtains exponential soluti
~possibly complex! in the usual way. This is no longer th
case for Eqs.~22! and ~23!, sinceDu, k, Dt , and possibly
Dn still depend on time according to Eqs.~9!–~11!. How-
ever, it is of interest to consider the approximation in whi
these quantities are regarded as constant in time, w
should be valid and useful in cases where they vary slo
compared to the growth rate of the instability. We therefo
proceed to determine the growth rates ofh andMi for con-
stanta in this approximation.

Substitutingh5a exp(gh t) into Eq. ~22! and solving for
gh , we find that

gh5
1

2
~Dn2Dk!6AAka1B~k•Du!21

1

4
~Dn1Dk!

2.

~25!

Similarly, settingMi5a exp(gM t) in Eq. ~23!, we obtain

gM52
1

2
~Dn1Dk!6AAka1B~k•Du!21

1

4
~Dn1Dk!

2

5gh2Dn ~26!

which again exhibits the removal of the purely geometri
contribution ofDn to the growth rate ofh. These equations
explicitly display the effects ofD on the growth rates. They
are unlikely to find much quantitative application in practic
situations, wherea is rarely constant, but they may neverth
less be useful in providing qualitative insight into the vario
functional dependences. For example, it is instructive to
amine the effect of compression on a pure RM instability,
which Du50 anda(t)5Dvd(t), so thata(t)50 for t.0.
Equation~25! then givesgh5Dn and gh52Dk , so thath
5a exp(Dn t)1b exp(2Dk t), wherea andb are determined
by the initial conditionsh0[h(t50) andḣ0[ḣ(t501), in
terms of which we readily finda1b5h0 and Dna2Dkb

5ḣ0 . It follows from Eq. ~22! that ḣ(01)5ḣ(02)
1AkDvh0 , and that ḣ5Dnh for t,0, so that ḣ(02)
5Dnh0 and ḣ(01)[ḣ05h0(Dn1AkDv). These relations
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1490 PRE 61JOHN D. RAMSHAW
determinea and b in terms of h0 and Dv. Thus a slow
compression or expansion has the effect of changing the
time dependence ofh from linear to exponential. When
max(uDn u,uDku)t!1, the exponentials can be linearized and
then regain the usual linearized RM growth lawh5h0(1
1AkDvt). It would be of interest to verify the predicte
exponential time dependence either experimentally~e.g., in a
cylinder fitted with a piston! or by means of direct numerica
simulations.

V. CONCLUSION

The effect of a slow uniform but anisotropic compressi
or expansion on the linear stability of an accelerated sh
layer has been derived. The resulting equation of motion
the amplitude of a small sinusoidal perturbation is given
Eq. ~22!, while the corresponding evolution equation for t
actual material masses transported across the original p
interface is given by Eq.~23!. The latter equation shows tha
compression dynamically enhances the mixing of mate
masses, in spite of the associated but purely geometrica
duction in ḣ.

We have restricted attention to situations in which t
velocity gradientD associated with the compression and e
pansion is uniform in all space and hence is the same in b
y

M

e

ar
r

y

ar

l
re-

-
th

fluids. It should be noted that this restriction is thermod
namically consistent only when both fluids have the sa
compressibility. The reason is thatpi

0 in Eq. ~17! is not
merely the uniform part of the dynamic pressure of Eq.~16!,
but also represents the thermodynamic pressure of fluii,
which is related tor i by an equation of state. For an isentr
pic compression, the conditionp1

05p2
0 then implies that

r1c1
2D15r2c2

2D2 , where ci and Di are, respectively, the
sound speed and velocity divergence in fluidi. Our restric-
tion to a globally uniformD implies D15D2 , and is there-
fore tantamount to a restriction to cases in which the t
fluids have the same compressibility; i.e.,r1c1

25r2c2
2. The

generalization of the analysis to allowD1ÞD2 unfortunately
presents nontrivial complications, which we hope to disc
elsewhere.
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