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Effect of slow compression on the linear stability of an accelerated shear layer
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An analysis is given of the effect of a slow uniform anisotropic compression or expansion on the linear
stability of a normally accelerated planar interface between two fluids with different densities and tangential
velocities, i.e., a combined Kelvin-Helmholtz and Rayleigh-Taylor instability, but generalized to an arbitrary
time-dependent acceleration history. The compression is presumed to be sufficiently slow that the density
remains uniform within each fluid and hence depends only on time. The perturbation is taken to be sinusoidal
with amplitude h(t). The time evolution ofh is determined by requiring pressure continuity across the
interface in the usual way. The resulting linearized stability equation is a second-order linear ordinary differ-
ential equation forh(t). Compared to the corresponding well-known result for incompressible fluids, it is
found that normal compression has the effect of reducing the perturbation growth atean obvious
geometrical correction, while transverse compression does not directly affect the net growth rate but rather has
the dynamical effect of increasing its time derivative. When attention is focused on the masses transported
across the initial interface rather thdm the purely geometrical effects of compression no longer appear
explicitly, while the dynamical effects remain. It is thereby shown that both normal and transverse compression
dynamically enhance the mixing of material masses, in spite of the corresponding purely geometrical reduction
in h.

PACS numbgs): 47.20.Bp, 47.20.Ft, 47.20.Ma

I. INTRODUCTION where g=dg/dt, p; is the density of fluidi, 2p=p;,+p,,
. N _ _ o Ap=p2=p1, pr2=p1p2/(p1t+pz), U is the unperturbed
Linear stability analysig1-3] remains an indispensable tangential velocity of fluidi parallel to the interfaceAu
tool in the continuing effort to understand mixing at unstable=u3—u? is the tangential velocity discontinuitk, is the
fluid interfaces. The linear analysis provides an accurate desomponent of the perturbation wave vector along the direc-
scription of the early stages of mixing, where the perturbation associated witihu, and the acceleratioa(t) is consid-
tion amplitude is small, and yields valuable analytical ex-ered positive when directed from fluid 1 into fluid 2. The

pressions for linear growth rates and their functionalsame analysis further shows that the perturbation propagates
dependence on the various relevant parameters such as wagong the interface with a phase velocity of

length, gravity, density ratio, etc. The linear theory also
serves as a cornerstone for the development of approximate o o
theories and models to describe mixing at late times, where — piUytpau;
the dynamics becomes strongly nonlingdr5]. This was :W'
indeed the motivation for the present work, and a corre-
sponding nonlinear model based on the present results will
be described elsewhere. However, the linear case is also of Equation(1) is valid only forh<\, and is restricted to
intrinsic interest in its own right, as it provides a theoreticalincompressible fluids for whicl; is constant in space and
framework for interpreting the early-time dynamics of un-time. In the absence of a better alternative, it has sometimes
stable fluid interfaces. been employed as an approximation to compressible fluids as
There are three classical interfacial instabilities, namelywell, particularly at low to moderate Mach numbers. How-
the Rayleigh-TaylofRT) [2,3,6], Richtmyer-MeshkoyRM)  ever, even when the Mach number is so low that the inho-
[7,8], and Kelvin-Helmholtz(KH) [1-3] instabilities. The mogeneities associated with acoustic waves are negligible,
linear theory of these instabilities in incompressible fluids iscompression or expansion of the mixing layer as a whole
well known and well understood, both when they occur sepaproduces global effects that E() does not capture, includ-
rately and when they occur together in various hybrid coming the purely geometrical changeshimand/ork associated
binations. Indeed, a linear stability analysis is readily per-with compression or expansion in the normal and/or tangen-
formed for a planar shear layer subjected to an arbitraryial directions, respectively. The correction for these geo-
time-dependent acceleration in the normal direcfiba3], a  metrical effects is not however obvious, as they interact with
situation which encompasses the three basic instabilitiegnd alter the dynamics. Our purpose here is to derive a gen-
above as special cases. The analysis shows that the tinegalization of Eq(1) that consistently includes the effects of
evolution of the amplitudé of a small sinusoidal perturba- a slow uniform anisotropic compression or expansion of the
tion with wavelength\ = 2r/k is determined by the equation mixing layer as a whole. Attention is restricted to compres-
sion and expansion rates which are sufficiently slow that the
) fluid densitiesp; remain uniform in space, and hence depend
2ph=[Apak+ pi(kAu)?]h, (1) only upon time. The analysis therefore makes no attempt to
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represent the more complicated compressibility effects asso- Without yet perturbing the interface, we now impose a
ciated with nonzero Mach number and acoustic waves.  uniform anisotropic compression upon the system, so that the

The derivation is based on potential flow theory. In Sec. llunperturbed velocity of fluid becomes
we obtain the linearized potential flow solution for a sinu-
soidal perturbation of an accelerated interface between two u’=u’+D-r, (4)
fluids with different densities and tangential velocities sub-
jected to an externally imposed uniform but anisotropic comwhere the uniform symmetric tensbris the gradient of the
pression or expansion. The corresponding linearized equae€locity field associated with the compression and expan-
tion of motion for the perturbation amplitude is then  sion. Thus negative eigenvalues Df imply compression,
derived in Sec. Ill by the conventional technique of requiringwhile positive eigenvalues imply expansion in their respec-
the pressure to be continuous across the interface. This théiye principal directions. In order to ensure that the compres-
yields the desired compressive generalization of (. sion and expansion do not change the normal directjome

In the present context, however, the evolution equatiormust impose the condition- D-t=0, wheret is any tangent
for his not the whole story. The densities and interfacial areavector normal ton; i.e., n-t=0. It follows thatD is of the
also change with time due to the compression, so that théorm
perturbation amplitudé alone no longer provides a suitable
measure of the degree of mixing. It is therefore of interest to D=D,nn+Dy, 5
convert the evolution equation fdr into a corresponding , , )
evolution equation for the actual material masdéstrans-  Where Di-n=0. Since the compression and expansion are
ported across the unperturbed interface, which are a mofdhiform, the fluid densitieg; remain uniform within each
accurate measure of the degree to which the two fluids haviHid but now become dependent on time according to

been mixed together by the instability. When this is done, the —_D 6
purely geometrical effects of the compression no longer ap- pi= Pi- ©®)
pear explicitly, and only the dynamical effects remain. The

_ . D: . . . .
resulting evolution equation fdvl; shows that compression Wh\?\;eD_Vt uf, D:u, andl_J is the unit dyaglc._t tthe i
dynamically enhances the mixing of material masses. € must of course require pressure continuity at the in-
terface in the unperturbed solution, and this imposes some

It is also of interest to compare the evolution equation for o 0 andD.. Th - be inferred
M; in the special casau=0 with that for the volume trans- €Strictions oruiandD; . These restrictions may be inferre
om the momentum equation of unperturbed fluid

ported across a spherical interface between two concentrft

incompressible fluid shell§5]. These two equations are JuP
found to be id_en_tical in form Whe_n the compr_ession_ rates are pi(i+ UP'VUP) — —VpiD—pian, 7
properly specialized to the spherical case. Finally, in Sec. IV at

we derive approximate analytical expressions for the growth 5. S _
rates of botth andM; in the special case of constant normal Wherep;” is the unperturbed pressure in fluidTaking the
acceleration. dot product of the tangential projection tenddtnn into
Eq. (7), combining the result with Eqs4) and (5), and
evaluating the resulting equation on the interface wirere
becomes a purely tangential vectome obtain

We consider an initially planar interface which separates _
two immiscible fluids with negligible surface tension in zero VpP=—pi[0’+D;-ul+t- (Dy+Dy- Dy, (8)
gravity. The unperturbed velocity of fluids denoted b)uio,
which is presumed to be uniform and purely tangential to thevhereV,=V —nn-V is the tangential gradient operator, and
interface. Thusuio- n=0, wheren is the unit normal to the use has been made of the fact tb?ﬂn=0. Pressure equality
interface which points from fluid 1 into fluid 2. The system is at the interface requires thﬁtp?=th2, and since the
also subjected to a normal accelerata(t)n relative to an  densities are generally different ah@ arbitrary, this in turn
inertial laboratory frame. It is convenient to describe the sysimplies
tem in a Cartesian coordinate frame with the same accelera-

Il. LINEARIZED POTENTIAL FLOW SOLUTION

tion. In this frame the system experiences an artificial exter- u?+ D;- ui°=0, 9
nal body force per unit mass efa(t)n, and the unperturbed
interface is stationary for atl The interface is then defined D,+ D, D,=0. (10)

by the time-independent equatianr =0, wherer is the po-

sition vector relative to an origin located somewhere on the |f Egs. (9) and (10) are not satisfied, this merely implies
interface. It is further convenient to let the coordinate framethat some other motion is also occurring in addition to the
move parallel to the plane of the interface with the velocityinterfacial instabilities of present interest. In such cases, the
of the linear KH surface waves, so that these waves alsQnperturbed interface will no longer remain stationary but
become stationary. When this is done we hava?+p,u3  will undergo some additional distortion unrelated to the in-

=0, which then implies stability, and the present analysis will no longer rigorously
o o apply. Even when Eqg9) and (10) are violated, however,
p2Us=—p1U; = p1oAU, ©) interfacial instabilities will still occur, and the present analy-

sis may still provide a useful description of these instabilities
whereAu=u2—u(l’ is the tangential velocity discontinuity. in situations where their growth rates are much larger than
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the characteristic frequencies associated with the underlyinig(t), however, the corresponding pressures in the two fluids
motions upon which they are superimposed. will in general be discontinuous across the interface. The
We now perturb the interface by subjecting each point natural motion of the system is that which preserves pressure
thereof to a small vectorial displacemdn(t)Cn, whereC  continuity at the interfacen-r=h(t)C, and this condition
=cogk(t)-r], k-n=0, and|hk|<1. The interface is now may be imposed to determine the linearized equation of mo-
defined by the equation-r=hC. The time dependence kf tion for h(t). For this purpose we require a suitable expres-
is necessary to allow for the change in wavelength due to thsion for the pressure; in fluid i. If the flow were incom-
tangential compression; i.e., nonzép. The time evolution pressible,p; could be obtained from the time-dependent
of k may be determined by requiring the ph&g¢) - R(t) to Bernoulli equatior9]
be independent of time for a poim(t) moving with the

transverse compression velociy-R; i.e., R=D;-R. We pi=—pi a—(ﬁi+3|v¢i|2+a(t)n.r +F(t), (16
thereby find a2
k=—D,-k=—D-k. (11  WwhereF;(t) is a function of time alone. In the present con-

text the flow is not incompressible, apg depends on time
We wish to evaluate the resulting potential flow field according to Eq.(6). Fortunately, however, it is easy to
=V ¢, in fluid i to first order inh. The perturbation to the verify that Eq.(16) remains valid even in this case, provided
velocity field iSUi'EUi—UP, and the perturbation to the po- thatp; remains uniform as it does her&his follows directly

tential is ¢/ =¢;— >, where VoP=uP and Vo' =u/.  from the momentum equation in the usual wawe may
Apart from irrelevant constants, the unperturbed velocity poherefore employ Eq(16) in the present context. To do so,
tentials are therefore given by we simply substitutep; = ¢;" + ¢; into Eq.(16), evaluate the

resultingp; at n-r=h(t)C, and linearize inh. After some

b o 1 algebra, we thereby obtain
<;/>i=ui-r+§r-D~r. (12
Pi=p/+p C+pS, (17)
The externally imposed uniform compression is assumed to
be sufficiently slow that acoustic effects can be neglected, s
thatV - u; remains uniform with the valuB. It then follows 1
thatV -u/ = V2¢/ =0, so that the perturbation to the velocity pY=— = pi|u’|2+Fi(1), (18
potential remains harmonic even thou§R¢;=D+#0. The 2
boundary conditions onp; are (a) (ﬁi*)(ﬁP (so that ¢/

here

—0) far from the interface antb) the normal derivative of kpS=+p, i(h_ D,h)+Dy(h—Dyh)— (u°-k)%h

¢; on the interface must be the same as the normal velocity dt

of the interface, with due allowance for the fact that the — p;akh (19)
i y

perturbation now causes the normal direction to differ
slightly from n. Condition(b) takes the form kpS= % piu0-[(2h+ Deh— D h)k—2hD-k]  (20)

(n+hsk)-Vg;=hC—h-r, 13 in which
where S=sink(t)-r], and the derivatives are evaluated at k?D,=k-D-k=Kk.D;-k (21)
n-r=hC. In the linear approximation, E¢13) reduces to
, and use has been made of E(®»—(11).

(%) =(h—Dnh)C—hSui°~k, (14) Thg linearized equation of motion fdr is thained_by

an . o requiring p,=p, for all k-r. The three terms imp; are lin-

early independent, so their coefficients must be separately

whered ¢! /an=V ¢/ -n, and use has been made of Etj).  equal, i.e.p’=p3, p5=p5, andp$=p5. The first of these
The solutions to Laplace’s equation that satisfy Bef) and  conditions provides no information, as it merely relates
vanish at infinity are readily found to be Fi(t) and F,(t). (It does, however, have thermodynamic
implications as discussed in Sec. V belpWhe second con-
dition reduces to an identity by virtue of E3), thereby
confirming that Eq.(3) does indeed imply stationary KH
surface waves even when compression is present. Thus the
wherek=|k|, the upper sign applies far-r>hC (i=2),  only nontrivial condition isp$=p$, which yields
and the lower sign fon-r<hC (i=1). The velocity of fluid
i is then given byu;=u’+D-r+ V¢ .

_1 y 0 Tk
¢/ =7 [(h—Dsh)C—hsul-kle* ", (15

d . .
a(h—Dnh)+Dk(h—Dnh)=[Aka(t)+B(k-Au)z]h,
I1l. LINEARIZED EQUATION OF MOTION (22

Equation(12) and (15) determine the potentialg=¢°  where A=(p,—p1)/(pa+p1)=Ap/(2p) is the Atwood
+ ¢{ and hence the velocitiex;:uiDJrng’)i’ resulting froma  number,B=p;p,/(p1+ p,)°=p1./(2p), and use has been
prescribed perturbation amplitude(t). For an arbitrary made of Eq(3).
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Equation(22) is the desired generalization of E(l) to  follows. The unperturbed incompressible radial velocity field
aIIO\_/v for nonzero value; db. It is.the Iinearized equation of jn spherical geometry is given hy,=R2R/r2, so thatD,,
motion for the perturbat|or_1 amphtugie in an accelerated shear. du, 1dr|,_=—2RIR. Moreover, in spherical geometry
layer with slow compression, and it properly reduces to the o . 5 ] .
incompressible Eq.l) whenD=0 as it should. Comparison the .areaA is simply proportional tdR®, so thatD, :U=A/A
with Eq (l) shows that normal Compressi(ﬁnegativeDn) =2R/R. But in this context any two Ol’thogona| tangential
has the obvious geometrical effect of reducing the perturbadirections are equivalent by symmetry, so thax
tion growth rate by an amounD,|h. However, we show =(1/2)D;:U=R/R. Thus D,+D,=—-2R/R+R/R=—R/R.
below that this reduction has no effect on the fluid masse&Vhen properly interpreted, Eq2) and(23) therefore also
transported across the interface or mixed together by the irapply in spherical geometry as a special case. This is quite
stability. It is entirely analogous to the purely geometricalremarkable, and makes it tempting to speculate that these
effects on perturbation amplitude that occur in spherical geequations may provide a useful approximate description of
ometry [5]. Comparison with Eq.1) further shows that compression and convergence effects on deforming curved
transverse compressidnegativeD ) does not directly affect interfaces in general, provided of course that the radius of

the net perturbation growth rake- D, h itself, but rather has ~ curvature remains much larger than the amplitude and wave-
the dynamical effect of increasing its time derivative by anlength of the perturbations.

amount|D,|(h—D,h).
It is of interest to derive a corresponding evolution equa- V- APPROXIMATE GROWTH RATES FOR CONSTANT

tion for the masaMi;(t) of fluid i which has moved across ACCELERATION
some Lagrangian ared of the original interflace by time. Whena andAu are constant in time, Eql) can of course
This mass is readily found to bil;(t)=m""p;Ah, where e solved analytically, and one obtains exponential solutions
A=(D;:U)A due to the transverse compression. Eliminating(possibly complexin the usual way. This is no longer the
h and its derivatives from Eq22) in favor of Mi(t) and its  case for Eqs(22) and(23), sinceAu, k, D,, and possibly
derivatives, we readily obtain D, still depend on time according to Eq@)—(11). How-
. ) ever, it is of interest to consider the approximation in which
M;+(D,+DpM;=[Aka(t)+B(k-Au)’]M;, (23 these quantities are regarded as constant in time, which
should be valid and useful in cases where they vary slowly
where use has been made of E6).. Comparison with Eq. compared to the growth rate of the instability. We therefore
(22) shows that the transformation td; as a variable has proceed to determine the growth rateshodind M; for con-
eliminated the purely geometrical correction discussedstanta in this approximation.
above, asM; itself is not modified by compressive effects.  Substitutingh=a exp(y,t) into Eq. (22) and solving for
However, the dynamical effects of compression remain and, we find that

are represented by the terr® {(+D,)M;, which subtracts 1
from M, . For a growing perturbation witM; ,M;>0, com- Yh=7(Da=Dy)* \/Aka+ B(k-Au)?+ 7(Dnt Dy)2.
pression D,,D,<0) therefore has the effect of increasing (25
M,. Thus we see thatompression dynamically enhances
mixing whereas a superficial interpretation of the simulta-Similarly, settingM;= a exp(yyt) in Eq. (23), we obtain
neous but purely geometrical reduction finmight errone-

ously lead one to the opposite conclusion. The physical in-
terpretation of this dynamical effect is not obvious in the "M~
present treatment, but it will be shown elsewhere that this
effect represents the amplification of kinetic energy by com- = 7¥n—Dn (26)
pression, and hence is closely analogoup ¢t work. . ) o )

It is also of interest to compare E@®3) with the corre- wh|ch again exhibits the removal of the purely geom_etrlcal
sponding growth law for an accelerated spherical interface ofontribution ofDj, to the growth rate oh. These equations
radiusR between concentric incompressible fluid shéig ~ explicitly display the effects ob on the growth rates. They
where the variable correspondingMy is s=R?h, which is are unhkely to flnq much quantitative application in practical
proportional to the volume transported across the unperSituations, wherais rarely constant, but they may neverthe-
turbed spherical interface. In the limit of large perturbationless be useful in providing qualitative insight into the various

mode number’, the evolution equation fos takes the form functional dependences. For example, it is instructive to ex-
[5] ’ amine the effect of compression on a pure RM instability, for

which Au=0 anda(t)=Av§(t), so thata(t)=0 for t>0.

1 1
—5(Dp+DY=* \/Aka+ B(k-Au)2+ 7(Dnt Dy)?

R Equation(25) then givesy,=D,, and y,=— Dy, so thath
§— ﬁ':s:Aka(t)s, (24  =aexpDyt)+pBexp(—Dit), wherea and 8 are determined
by the initial conditionsho=h(t=0) andh,=h(t=0+), in

wherek=//R is the effective wave number of the perturba- (€7MS 0f which we readily findr+5=ho andDa— DS

tion [5]. Equation(24) is formally identical with Eq(23) for ~ =ho. It follows from Eq. (22) that h(0+)=h(0—)
Au=0 if D,+D, is identified with—R/R. This identifica- ~+AkAvho, and thath=Dgh for t<0, so thath(0—)
tion is indeed appropriate, and this is easily established as D,hg and h(0+)=hy=ho(D,+AkAv). These relations
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determinea and B in terms ofhy and Av. Thus a slow fluids. It should be noted that this restriction is thermody-
compression or expansion has the effect of changing the RMamically consistent only when both fluids have the same
time dependence oh from linear to exponential. When compressibility. The reason is thaf in Eq. (17) is not
max(D, |,|D)t<1, the exponentials can be linearized and wemerely the uniform part of the dynamic pressure of Bd),
then regain the usual linearized RM growth ldw hy(1 but also represents the thermodynamic pressure of fluid
+AkAvt). It would be of interest to verify the predicted which is related tg; by an equation of state. For an isentro-
exponential time dependence either experimentally., ina pic compression, the conditiop=p then implies that
cylinder fitted with a pistonor by means of direct numerical P1CED1:P20§D2, wherec; and D; are, respectively, the
simulations. sound speed and velocity divergence in fluidur restric-
tion to a globally uniformD impliesD;=D,, and is there-
V. CONCLUSION fore tantamount to a restriction to cases in which the two

The effect of a slow uniform but anisotropic compressionfIUIdS have the same compressibility; i.p5C1=p,Cz. The
or expansion on the linear stability of an accelerated Sheagenerallzatlon _Of the analy3|s_ to a"dw.ﬂ& D> unfortunate_ly
layer has been derived. The resulting equation of motion fopresents nontrivial complications, which we hope to discuss
the amplitude of a small sinusoidal perturbation is given byelsewhere.
Eq. (22), while the corresponding evolution equation for the
actual material masses transported across the original planar
interface is given by Eq23). The latter equation shows that ACKNOWLEDGMENTS

compression dynamically enhances the mixing of material | am grateful to Larry Cloutman and Karnig Mikaelian for
masses, in spite of the associated but purely geometrical regnany helpful discussions and for directing my attention to
duction inh. some of the relevant literature. This work was performed

We have restricted attention to situations in which theunder the auspices of the U.S. Department of Energy by
velocity gradientD associated with the compression and ex-Lawrence Livermore National Laboratory under Contract
pansion is uniform in all space and hence is the same in botNo. W-7405-ENG-48.

[1] H. Lamb, Hydrodynamics6th ed.(Dover, New York, 194k [6] H. J. Kull, Phys. Rep206, 197 (199J.
[2] S. Chandrasekhalydrodynamic and Hydromagnetic Stability [7] R. D. Richtmyer, Commun. Pure Appl. Math3, 297 (1960.

(Dover, New York, 1981 [8] E. E. Meshkov, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza
[3] P. G. Drazin and W. H. Reidilydrodynamic StabilitfCam- 151 (1969 [lIzv. Acad. Sci. USSR Fluid Dy, 101 (1969].

bridge University Press, Cambridge, 1981 [9] G. K. Batchelor,An Introduction to Fluid DynamicgCam-
[4] J. D. Ramshaw, Phys. Rev.3B, 5834(1998. bridge University Press, Cambridge, 1970

[5] J. D. Ramshaw, Phys. Rev.@®, 1775(1999.



